2023 Impact factor 0.8
Historical Perspectives on Contemporary Physics

EPJ Plus Focus Point on Uncertainty Quantification of Modelling and Simulation in Physics and Related Areas: From Theoretical to Computational Techniques

Guest Editors: Juan Carlos Cortés, Tomás Caraballo, Carla M.A. Pinto

The main goal of this topical article collection is to present new advances on theoretical and computational techniques for uncertainty quantification of modelling and simulation in relevant problems appearing in physics sciences. Many important laws in Physics are formulated by means of equations -mainly differential equations- whose input data is set after experimental measurements, therefore containing uncertainties. Apart from this fact, there often are model parameters whose nature is not known deterministically but randomly because of ignorance and inherent complexity of the physical phenomenon under study. This approach motivates the necessity of treating classical equations in Physics by considering uncertainties in their formulations. This approach is currently a cutting-edge topic whose rigorous analysis requires to masterly combine Physics, Probability and Computing, not just to solve exact or numerically the corresponding equations but also to correctly estimate model parameters, perform accurate simulations and interpret the results.

All articles are available here and are freely accessible until 16 March 2023. For further information, read the Editorial.

EPJ Plus Focus Point High-Energy Accelerators: Advances, Challenges, and Applications

Guest Editors: R. B. Appleby, A. Bazzani, M. Giovannozzi & E. Levichev

In this Focus point issue we look at the frontiers of beam dynamics in particle accelerators. These machines are unique scientific tools that provide focused high-density beams of sub-atomic particles such as electrons, protons or ions, at energies unparalleled in any other areas of laboratory-based science. They have been applied to vast range of problems in the last century or so, with circular colliders playing a special role in discovering new particles and new physics, with energy and particle collision rates of several orders of magnitude higher than those of pioneer colliders in the early 1960s. This Focus Point issue covers the field of particle beam physics, with a loose classification into the categories of advances in the field, challenges, and broader applications. This includes exciting topics such as non-linear beam dynamics, the Large Hadron Collider, the SuperKEKB, and the Future Circular Collider, the physics that occurs when two beams collide and some papers on the future advances of the field. We hope this issue is both exciting and inspiring for our community, and of interest beyond our community as well.

All articles are available here and are freely accessible until 16 March 2023. For further information, read the Editorial.

EPJ Plus Focus Point on New Technologies for Detection, Protection, Decontamination and Developments of the Decision Support Systems in Case of CBRNe Events

Guest Editors: Andrea Malizia, Parag Chatterjee, Marco D’Arienzo

The global crisis related to the reduction of energy fossil resources, the reduction of potable water resources and the war for the control of energy sources are part of the causes which can lead to an intentional CBRNe (Chemical, Biological, Radiological, Nuclear, and explosive) event. These kinds of events could also be the consequence of an intentional or unintentional release of substances (i.e., an accident of a truck containing a toxic industrial chemical), or of natural events like a tsunami or an earthquake. Especially in today’s global scenario, a sharp rise in the potential risks puts seminal importance on the development of new solutions to prevent such events, handle the emergency situations and restore normalcy.

This special issue highlights some innovative and novel solutions to several CBRNe emergencies scenarios. All articles are available here and are freely accessible until 7 January 2023. For further information, read the Editorial

EPJ Plus Highlight - Assessing the environmental impact of future ‘Higgs factories’

The abandoned tunnel of the Large Hadron Collider in 2019 during a shutdown. Eventually, the accelerator will have to be replaced and a new paper considers the environmental impact of its replacement. Credit: Robert Lea

New research looks at planned particle accelerators that will follow the retirement of the Large Hadron Collider— the world’s most powerful particle accelerator

In 2012 CERN’s Large Hadron Collider (LHC) revolutionised particle physics when it was announced that the Higgs boson had been created and detected by the world’s most powerful particle accelerator.

Yet, the work of the LHC isn’t done. It is currently in its third run and being prepared for a high luminosity upgrade that will lead to more collisions and thus the creation of more Higgs particles. But eventually the accelerator will need to be retired and replaced.

The comparisons of power consumptions or luminosity delivered for a given power for future Higgs-producing colliders have been widely considered, but a new paper in EPJ Plus by CERN researcher Patrick Janot and the University of Geneva’s Alain Blondel considers the environmental impact of future ‘Higgs factories’ that could replace the LHC.

Read more...

EPJ Plus Focus Point on Advances in Photonics for Heritage Science: Developments, Applications and Case Studies

Guest Editors: Daniela Comelli, Austin Nevin & Gianluca Valentini

Photonics is the science of light and is considered one of the key enabling technologies for innovation in all industries. New photonic applications are emerging in various fields, such as environmental monitoring and medicine. The same technological innovation is being adopted in the field of heritage science, where photonics is the foundation for the application of a range of non-invasive, non-contact, and often portable devices for studying works of art and artistic materials.

In this Focus Point on “Advances in Photonics for Heritage Science: Developments, Applications and Case Studies”, the guest editors have selected seventeen papers that present a range of optical and photonics-based techniques, highlighting their advantages and limitations, as well as current and future applications to study our heritage.

Read more...

EPJ Plus Highlight - How advanced optical tweezers revolutionized cell manipulation

A ‘tug of war’ set of optical tweezers — separated beams of light that can trap bacterium. Credit: Hu. S., et al, [2022]

A new review looks at devices called optical tweezers and how they are used to better uncover the natural secrets of human life at the single-cell level.

Optical tweezers (OTs), also known as optical traps, are highly focused laser beams that can be used to trap and manipulate microscopic objects with a noncontact force. Employed in a wide range of nano and micro-scale operations, OTs have become particularly useful in the manipulation of biological objects including human cells.

A new review published in EPJ Plus conveys the latest achievements in OTs over recent decades. The review is authored by researchers from the College of Information Science and Engineering, Northeastern University, Shenyang, China — Sheng Hu, Jun-yan Ye, Yong Zhao and Cheng-Liang Zhu .

Read more...

EPJ Plus Highlight - Modelling the use of Beta Radiation in cancer treatment

An illustration of beta decay proceeding against the backdrop of a Monte Carlo simulation. Credit: Robert Lea

New research pits the simulation of beta radiation doses in tumour treatment against an analytical method.

Treating superficial skin tumours especially when they are located above cartilage or bone with beta radiation can help protect sensitive structures during the delivery of treatment.

The use of short-range beta radiation in cancer treatment is not without its disadvantages, however, especially when it comes to the measurement of radiation exposure — dosimetry. When experimental dosimetry is not feasible, researchers use simulations and calculations to study the interaction of the ionizing radiation with matter and estimate the radiation dose delivered to a target organ.

A new paper published in EPJ Plus and authored by Eduardo De Paiva, from the Division of Medical Physics at the Institute of Radiation Protection and Dosimetry, Rio de Janeiro, Brazil, and his colleagues, pits the gold standard of simulation techniques — Monte Carlo (MC) simulation — against an alternative analytic method, the Loevinger formula.

Read more...

EPJ Plus Highlight - Exotic carbon microcrystals in meteorite dust

Images of carbon microcrystals taken with (a)) optical and (b)-d)) scanning electron microscopes.

Unusually shaped microcrystals formed of pure, graphite-like carbon were discovered in the dust of the 21st-century’s largest meteorite. They are likely to have grown in layers from complex carbon nuclei such as fullerene.

The largest meteorite observed so far this century entered the Earth’s atmosphere above Chelyabinsk in the Southern Urals, Russia on February 15, 2013. Unusually, dust from the surface of this meteorite survived its fall and is being extensively studied. This dust includes some unusually shaped microcrystals of carbon. A study of the morphology and simulations of the formation of these crystals by a consortium led by Sergey Taskaev and Vladimir Khovaylo from Chelyabinsk State University, Russia is now published in the journal EPJ Plus.

Read more...

EPJ Plus Highlight - Probing high-energy neutrinos with an IceCube

The IceCube neutrino telescope at the South Pole. Copyright: Stephen Richter, 2015. CC BY-NC-SA 3.0.

Studying a high-energy neutrino that was observed by the IceCube Neutrino Observatory at the South Pole and that is believed to be intergalactic in origin has yielded some intriguing ‘new physics’ beyond the Standard Model

The subatomic particles called neutrinos, are believed to be ubiquitous throughout the Universe but are very difficult to detect. Now, Moroccan astrophysicist Salah Eddine Ennadifi and his co-workers, published a paper in EPJ Plus that describes the first known observation of intergalactic, high-energy neutrinos and probes new neutrino-related physics beyond the Standard Model of Particle Physics.

Read more...

EPJ Plus Highlight - Assessing the impact of loss mechanisms in solar cell candidate

Diagrams chart the impact of interface recombination and absorber minority carrier lifetime on efficiency and open-circuit voltage of a solar cell.

The superconductor antimony sulfide selenide is a potential candidate for solar materials, but this depends on understanding how to boost its efficiency.

As climate change continues to present itself as the most pressing threat facing our planet, researchers push to find efficient and clean alternatives to fossil fuels. Foremost among this research is harnessing free energy from the sun. Doing this efficiently requires advanced knowledge of the qualities of materials used in the construction of solar cells.

In a new paper published in EPJ Plus, Maykel Courel from the Centro Universitario de los Valles (CUValles), Universidad de Guadalajara, Mexico, and co-authors, look at the limitations of the material antimony sulfide selenide, which has emerged as a potential candidate for solar cell fabrication.

Read more...

Editors-in-Chief
A. Blum and M. Leone
ISSN (Print Edition): 2102-6459
ISSN (Electronic Edition): 2102-6467

© EDP Sciences and Springer-Verlag