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Abstract. The particle transport through a chain of quantum dots coupled to two bosonic reservoirs is
studied. For the case of reservoirs of non-interacting bosonic particles, we derive an exact set of stochastic
differential equations, whose memory kernels and driving noise are characterised entirely by the properties
of the reservoirs. Going to the Markovian limit an analytically solvable case is presented. The effect of
interparticle interactions on the transient behaviour of the system, when both reservoirs are instantaneously
coupled to an empty chain of quantum dots, is approximated by a semiclassical method, known as the
Truncated Wigner approximation. The steady-state particle flow through the chain and the mean particle
occupations are explained via the spectral properties of the interacting system.

1 Introduction

The advance in technology in the last decades has al-
lowed the creation of increasingly smaller devices reaching
the point where the realisation of logic structures on the
atomic level is possible [1–4]. Because of their low dimen-
sionality and temperature the dynamics of the system can
be dominated by quantum effects, opening a large play-
ground for experimental testing of many-body correlation
effects on particle (charge or mass) transport.

These ideas boosted also the investigation of transport
of ultracold atoms in systems with reduced dimensional-
ity. Transport of fermionic and bosonic ultracold atoms in
quantum wires and in one-dimensional optical lattices is
studied theoretically in [5–10]. In [11] a possible realisa-
tion of an atom analogue of an electron quantum point
contact by the use of a microfabricated magnetic wave-
guide is presented. In an experiment a macroscopic atomic
cloud was divided into two reservoirs separated by a nar-
row channel by the use of a laser beam [12], thus creat-
ing a cold-atom analog of a mesoscopic conductor. Re-
cent advances in the manipulation of cold atoms loaded
in optical lattices are presented in [13,14]. Decreasing the
dimensionality of the tunneling to zero, a new field is
investigated − the atomtronics. The creation of bosonic
analogues to the mesoscopic systems used in electronic
devices like a diode or field-effect transistor is suggested
in [15] and also theoretically investigated in [16,17].

In this work we focus on bosonic transport through
a chain of quantum dots coupled to two bosonic reser-
voirs that keep the system far from equilibrium. Given
the by now very well understood behaviour of electronic
(fermionic) systems, the first obvious question is about the
differences between the bosonic and fermionic transport.

a e-mail: ivanov@thphys.uni-heidelberg.de

It is known that the fermionic Anderson impurity model –
a quantum dot with few energy levels, coupled to two elec-
trodes (electron baths) is the simplest possible model for a
field effect transistor (FET). Since the ultracold gas based
systems offer a much better degree of “designability” and
coherence control, it is also natural to investigate the pos-
sibility of a bosonic FET. Having these goals in mind we
offer a formal framework for investigation of such systems
on the one hand, and on the other hand propose a number
of efficient and physically meaningful approximation tech-
niques, which are able to treat even interacting systems.

In Section 2 we derive a set of stochastic differential
equations for the time evolution of the reduced system by
writing down the Keldysh partition function of the system
and integrating out the reservoir degrees of freedom. In or-
der to derive the set of equations one performs essentially
the same steps as in [18], where a closed system is con-
sidered, the difference being only in the addition of two
bosonic reservoirs. In Section 3, we restrict the system
to the special case of two bosonic Markovian reservoirs,
which is analytically solvable in the noninteracting case.
In Section 3.1, we focus on the steady state properties of
the system. New effects, appearing after an addition of an
interparticle interaction term to the system Hamiltonian,
are explained by the use of the spectral properties of the
chain of quantum dots. A possible solution in the strongly
interacting limit is also suggested. In Section 3.2, the tran-
sient behaviour of an initially empty chain of quantum
dots, which is instantaneously coupled to two Markovian
reservoirs, is calculated. We find a simple scaling law be-
tween the time needed to reach a steady state and the
strength of the inteparticle interaction. Section 4 con-
cludes the paper, offers a possible experimental realisation
of our setup, and outlines the avenues for further research.
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2 General derivation of a stochastic
differential equation

2.1 Single quantum dot coupled to a bosonic reservoir

To start with, we consider a system consisting of a single
quantum dot at energy Δ coupled to a bosonic reservoir
with spectral density D(ω) and occupation of the modes
n(ω). At the initial time ti the density matrix of the sys-
tem is assumed to be a direct product of the density matri-
ces of the reservoir ρ̂ and the quantum dot σ̂. The reservoir
is modeled as a set of noninteracting harmonic oscillator
levels. Their eigenfrequencies εk should form a continuum,
which ensures that the time evolution is irreversible and
a steady state is reached. The Hamiltonian of the system
is given by:

Ĥ = Δâ†â− ∑

k

γk
(
â†L̂k + L̂†

kâ
)

+
∑

k

εkL̂
†
kL̂k, (1)

where â†, L̂†
k create a particle in the quantum dot or in the

reservoir mode k. One can write down the Keldysh parti-
tion function [19], which in the continuous time notation
is given by:

Z =
∫ ∏

k

D[L∗,L]〈Lk,−(ti)|ρ̂k|Lk,+(ti)〉

×
∫

D[a∗, a]〈a−(ti)|σ̂|a+(ti)〉

× e−L
∗
k,−(ti)·Lk,−(ti)e−a

∗
−(ti)·a−(ti)eiS ,

Lk(t) = (Lk,−(t), Lk,+(t))T ,

a(t) = (a−(t), a+(t))T . (2)

The −/+ subscript denotes the position of the field on the
forward/backward branch of the Keldysh contour and the
ket-vectors |a〉, |Lk〉 are eigenvectors of the annihilation
operators â and L̂k. The initial time on both branches of
the Keldysh contour is denoted by ti and its turning point
by tf . The corresponding action is given by:

S =
∫ tf
ti
dτ

{
a†(τ)g−1(τ)a(τ) +

∑

k

L†
k(τ)g

−1
k (τ)Lk(τ)

+
∑

k

γk
(
L†
k(τ)σza(τ) + a†(τ)σzLk(τ)

)}

(3)
where g−1(τ) = (i∂τ −Δ)σz , g

−1
k (τ) = (i∂τ − εk)σz and

σz is the Pauli z-matrix.
If one uses the discrete time notation, one can include

〈Lk,−(ti)|ρ̂k|Lk,+(ti)〉 e−L∗
k,−(ti)·Lk,−(ti) into the time dis-

crete form of the matrix g−1
k (τ) [19] and integrate out the

reservoir degrees of freedom, thus giving the final result

Z =
∫
D[a∗, a]e−a

∗
−(ti)a−(ti)〈a−(ti)|σ̂|a+(ti)〉eiS′

,

S′ =
∫ tf
ti
dτ1dτ2a†(τ1)G−1(τ1, τ2)a(τ2).

G−1(τ1, τ2) = δ(τ1 − τ2)g−1(τ1) −
∑

k

γ2
kσzgk(τ1 − τ2)σz .

(4)

The expectation value of a normally ordered observable
Ô ≡ O(â†, â) at the turning point tf of the contour is
given by:

〈Ô(tf )〉 =
∫

D[a∗, a]
{〈a−(ti)|σ̂|a+(ti)〉e−a∗−(ti)·a−(ti)

×O(a∗+(tf ), a−(tf ))eiS
′}
. (5)

In the same way as in [18], where the case of a closed
system is considered, one can apply the Wigner trans-
formation (a∓(τ) = ψ(τ) ± 1

2η(τ)) and integrate out the
η(ti), η(tf ) fields to reduce equation (5) to:

〈Ô(tf )〉 =
∫

D[ψ∗, ψ, η∗, η]
{
σW(ψ∗(ti), ψ(ti))

×OW(ψ∗(tf ), ψ(tf ))eiS ′′}. (6)

The Wigner transform of the density matrix
σW(ψ∗(ti), ψ(ti)) and the Weyl symbol of the ob-
servable OW(ψ∗(tf ), ψ(tf )) are both obtained after
integrating out the η∗(ti), η(ti) and η∗(tf ), η(tf )-fields,
respectively,

σW (ψ∗, ψ) =
∫
dη∗dη
4π2

{〈ψ+η/2|σ̂|ψ−η/2〉
× e−|ψ|2−1/4|η|2+1/2(η∗ψ−ηψ∗)

}
,

OW (ψ∗, ψ) =
∫
dη∗dη

2π
e−|η|2/2O(ψ∗−η∗/2, ψ+η/2).

(7)

Calculating OW is equivalent to writing down the normal
ordered operator in a symmetrised form and then replac-
ing â†, â with ψ∗, ψ, respectively. The new action has the
form:

S′′ = i

∫ tf

ti

dτ1dτ2
{
η∗(τ1)2i

(
Γn+ Γ/2

)
(τ1 − τ2)η(τ2)

+ ψ∗(τ1)[δ(τ1 − τ2)(i∂τ2 −Δ)
− 2iΓ (τ1 − τ2)Θ(τ2 − τ1)]η(τ2)
+ η∗(τ1)[δ(τ1 − τ2)(i∂τ2 −Δ)

+ 2iΓ (τ1 − τ2)Θ(τ1 − τ2)]ψ(τ2)
}

(8)

where

Γ (t) = π

∫ ∞

−∞

dω

2π
D(ω)γ2(ω)e−iωt

and
(
Γn

)
(t) = π

∫ ∞

−∞

dω

2π
D(ω)γ2(ω)n(ω)e−iωt.

In the noninteracting case the action contains only terms
that are linear or quadratic in the η, η∗ fields. Both types
of terms can be integrated out to give the following result:

〈Ô(tf )〉 =
∫

D[ξ∗, ξ]e−
∑

lk ξ
∗
l Σ

−1
lk ξk

×
∫

D[ψ∗, ψ]
{
σW(ψ∗(ti), ψ(ti))

×OW(ψ∗(tf ), ψ(tf ))δ(f1(ψ))δ(f2(ψ∗))
}
,

Σlk = 2(Γn+ Γ/2)(tl − tk). (9)
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In order to derive the last expression we have divided
the time interval into N equal parts Δt = tf−ti

N (tl =
ti + lΔt) and defined Σ ∈ CN+1×N+1 (Σlk ≡ Σ(tl − tk)),
ξ, ξ∗ ∈ CN+1 (ξl ≡ ξ(tl)). The time evolution of ψ is de-
termined entirely from the argument of the δ-function. If
one sets f1(ψ) to be equal to zero one obtains the following
stochastic differential equation:

∂tψ(t) = −iΔψ(t) − ∫ t
ti
dτ2Γ (t− τ)ψ(τ) + ζ(t), (10)

where ζ(t) is a Gaussian stochastic process with zero
mean and autocorrelation function given by 〈ζ(t)ζ†(t′)〉 =
Σ(t − t′). The equation of motion for ψ∗(t) is obtained
by setting f2(ψ∗) equal to zero and it is equal to the
complex conjugate of equation (10). In order to calcu-
late 〈Ô(tf )〉 one has to sample a finite number of points
{ψj(ti)}j=1...NT from σW (ψ∗(ti), ψ(ti)), let them evolve
according to the stochastic differential equation (10) and
then calculate the following expectation value:

〈Ô(tf )〉 ≈ 1
NT

NT∑

j=1

OW(ψ∗
j (tf ), ψj(tf )). (11)

For large enough tf , a steady state should be reached.
One should note, that the strength of the memory kernel
in the second term of equation (10) and the autocorre-
lation function of the noise depend entirely on the prop-
erties of the reservoir. Having a reservoir with constant
density of states over the entire frequency spectrum, en-
ergy independent couplings γk and a constant occupation
of the modes (i.e. D(ω) = D = const, γk = γ = const.,
n(ω) = n = const.) the Markovian limit is reached, where
the memory kernel vanishes and the stochastic process ζ(t)
becomes a Gaussian white noise:

∂tψ(t) = −iΔψ(t) − Γψ(t) + ζ(t)
〈
ζ(t)ζ†(t′)

〉
= 2Γ (n+ 1

2 )δ(t− t′).
(12)

It is important to stress that the same equation is obtained
if one starts with the master equation in Lindblad form
for the density matrix σ̂ of a single quantum dot:

∂tσ̂ = −i[Δâ†â] + L̂σ̂
L̂σ̂ = −Γ (n+ 1)[â†âσ̂ + σ̂â†â− 2âσ̂â†]

− Γn[ââ†σ̂ + σ̂ââ† − 2â†σ̂â], (13)

and subsequently applies the operator correspondences
given in [20] in order to map the last expression to a
Fokker-Planck equation. After that one can use the fact,
that any Fokker-Planck equation can be rewritten as a
Langevin equation. The addition of a dephasing Lindblad
operator Lσ̂ = −γ

2 [â†â, [â†â, σ̂]] to the equation will result
only in the appearance of an additional term i

√
γψ(t)ζ̃(t)

on the right hand side of equation (12), where ζ̃(t) is a
Gaussian white noise

( 〈
ζ̃(t)ζ̃†(t′)

〉
= δ(t− t′)

)
.

The addition of an on-site repulsion term U
2 â

†â†ââ to
the system Hamiltonian reflects in the action S′′ by the
addition of

−U ∫
dτ

[(
ψ∗2ψη + η∗ψ∗ψ2

)
+ 1

4

(
η∗2ηψ + ψ∗η∗η2

)]
.
(14)

The τ -dependence is dropped for simplicity here. The
terms in the second bracket are neglected to allow for a
mapping onto a set of stochastic differential equations.
This is the essence of the so-called truncated Wigner
approximation (TWA) [20–22].

2.2 Chain of N quantum dots coupled to two bosonic
reservoirs

The generalisation of the simple example from the previ-
ous subsection to the case of an arbitrary number of wells
(quantum dots) N between two reservoirs is straightfor-
ward. The Hamiltonian of this system is given by:

Ĥ =
N∑

j=1

Δj â
†
j âj +

∑

k

εkL̂
†
kL̂k +

∑

k′
εk′R̂

†
k′ R̂k′

−
∑

k

γL,k
(
â†1L̂k + L̂†

kâ1

)

−
∑

k′
γR,k′

(
â†N R̂k′ + R̂†

k′ âN
)

−
N−1∑

j=1

J
(
â†j+1âj + â†j âj+1

)
+

1
2

N∑

j=1

Uj â
†
j â

†
j âj âj .

(15)

The ladder operators L̂(†)
k , R̂

(†)
k , â(†) are responsible for the

annihilation (creation) of an excitation at the left, right
reservoir and at the chain of quantum dots. We always set
U1 = 0 = UN and Δ1 = 0 = ΔN . The corresponding set
of stochastic differential equations that one has to solve is
given by:

∂tψ1(t) = −
∫ t

ti

dτ2ΓL(t− τ)ψ1(τ) + iJψ2(t) + ζL(t),

∂tψj(t) = − iΔjΨj(t) + iJ
(
ψj−1(t) + ψj+1(t)

)

− iUjψ
2
j (t)ψ

∗
j (t), (1 < j < N )

∂tψN (t) = −
∫ t

ti

dτ2ΓR(t− τ)ψN (τ) + iJψN−(t) + ζR(t),

(16)

where ΓL,R, ζL,R are defined in the same way as in equa-
tion (10) and the subscript L,R refers to the left, right
reservoir. We assume that initially the lattice chain is
empty (〈â†i âj〉 = 0) and at ti = 0 it is instantaneously
coupled to the environment, i.e. we take γk(t) = γkθ(t).
The Wigner function of the initial state is then

σW (ψ∗, ψ) =
∏

j

(
2
π e

−2ψ∗
jψj

)
. (17)

3 Results for a chain of N quantum dots
coupled to two Markovian reservoirs

3.1 Steady state properties of the system

We first consider the case N = 3. Using the nonequi-
librium Green’s function approach we get exact results

http://www.epj.org
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Fig. 1. Steady state current for a chain of three quantum dots
coupled to two Markovian reservoirs for nonzero interparticle
interaction U2/J = 10−3. Truncated Wigner approximation
(triangles − Γ/J = 5, squares − Γ/J = 50) and tadpole ap-
proximation (solid line − Γ/J = 5, dashed line − Γ/J = 50).
Additional parameters: Δ2/J = 0, nR = 100. The peaks in the
tadpole approximation are at nL = 5 × 103 and nL = 5 × 104

for Γ/J = 5 and Γ/J = 50, respectively. The corresponding
new values of Δ2/J → Δ2/J + U2(1 + nL + nR)/J ≈ U2nL/J
are 5 and 50.

for the noninteracting case and Markovian reservoirs. The
mean occupation number nj (j = 1, 2, 3) of the dots and
the steady state current I are given by the following exact
solutions, for Γ = πγ2D, Δ2 = 0, and x = J/Γ :

n1 = nL − nL − nR
2

x2

1 + x2
, (18)

n2 =
nL + nR

2
, (19)

n3 = nR − nR − nL
2

x2

1 + x2
, (20)

I = J
x

1 + x2
(nL − nR) , (21)

where nL/R are the occupation numbers of the modes of
the left/right reservoir. We should note that the steady
state current remains the same independent of the length
of the lattice chain as long as Uj = 0 = Δj ∀j.

In the case of nonzero interparticle interaction in the
Markovian limit we approximate the interaction contri-
bution to the self-energy only by the tadpole diagram
(one loop diagram with two external legs, also referred
to as Hartree contribution) [23]. We shall see later that
already this approximation yields a number of interesting
details, which are consistent with the TWA predictions.
In the current case the tadpole diagram renormalises the
energy level of the middle quantum dot from Δ2 = 0 to
Δ2 = U2(1 + nL + nR) = U2(1 + 2n2). At this point it
is important to realise that equation (19) is also valid for
Δ2 	= 0, which means that n2 is unchanged in this ap-
proximation. The same behaviour of n2 is obtained by the
TWA.

From Figure 1 one sees that the steady state current
has qualitatively the same behaviour in the TWA and in

the tadpole approximation for not too large nL. The slope
of the curves and the position of the peaks in the second
approximation can be explained with the spectral func-
tions of the three quantum dots Aj(ω), (j = 1, 2, 3) [24]
that can be obtained from the action S ′ of the noninteract-
ing system after the substitution Δ2 → Δ2 +U2(1+2n2).
In this approximation the spectral functions of the first
and third quantum dot are exactly the same since the sys-
tem is symmetric under the exchange of (1, L) ↔ (3, R)
indices (except nL,R) and the retarded Green’s functions
of the system do not depend on nL,R in the nonintercat-
ing case. In the tadpole approximation this symmetry is
not broken since we have only to renormalise Δ2. For in-
creasing Γ , A1(ω), A3(ω) become wider and they do not
change when varying the energy level Δ2 of the middle
quantum dot, except for the appearance of a small dip
and peak at ω = Δ2. In the following discussion the latter
effect is not important. On the other hand A2(ω) has only
a narrow peak at ω = Δ2.

Now, we look at the overlap of the spectral functions
of the left and the middle quantum dots (A1(ω),A2(ω))
(the results for the overlap between A2(ω) and A3(ω) are
exactly the same). For Δ2 = 0 and increasing Γ , the over-
lap is in the same energy range since the width of A2(ω)
is almost unchanged in comparison to the width of A1(ω).
Only particles in the left dot with energies also accessible
in A2(ω) can tunnel to the middle dot. But this number
is smaller since, for larger Γ , A1(ω) spreads over a wider
range of energies and the particles at the left dot are dis-
tributed over this range. It follows that the current should
also decrease. This explains the difference in the slope of
the curves plotted in Figure 1 for small values of nL−nR.
The same behaviour can be seen also in equation (21) in
the relevant parameter regime x = J/Γ � 1.

With this simple picture one can also explain the po-
sition of the peaks at the curves plotted in Figure 1. In
the tadpole approximation an increase of the interparticle
interaction strength leads to a change of the energy level
of the dot (Δ2 → Δ2 + U2(1+nL+nR) ≈ U2nL). We have
to take into account the competition between two effects.
On one hand, an increase of nL leads to a shift of the peak
of A2(ω) to higher values, thus decreasing the overlap be-
tween A1(ω) and A2(ω), meaning that the relative number
of the particles that can tunnel to the middle quantum dot
decrease. On the other hand, looking at equation (18), the
total particle number in the first quantum dot increases
almost linearly with nL. The position of the peak should
be at the point, where the first effect begins to dominate
over the second one. From Figure 2, we see that for two
different Γ this is the value, where A1(Δ2 = U2nL) is
equal to half of its maximum.

Within our approximations and keeping the number
of quantum dots N = 3, there is no difference in the re-
sults for the mean particle occupation nj (1 < j < N )
of the quantum dots in the interacting and noninteracting
regime. For N ≥ 4 such a difference can be seen as shown
in Figure 3 for N = 4 and U2 = U3 = U after applying
the TWA and solving equation (16). The tadpole approx-
imation cannot describe such a difference in the particle

http://www.epj.org
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Fig. 2. Spectral functions of the first (left panel) and the sec-
ond (right panel) quantum dot. For Γ/J = 5 (50) the black,
dark grey and grey lines in the upper (lower) two figures denote
the spectral functions for Δ2/J = 0, 5 and 10 (0, 50 and 100)
respectively. The peak of A2(ω) is at ω = Δ2. The dashed ver-
tical line denotes the value of the critical Δ2 ≈ U2n2 where the
peak in the current in Figure 1 in the tadpole approximation
is reached.

occupation of the middle two dots since it gives the same
correction to their energy levels Δ2 and Δ3.

We attempted a self-consistent calculation, which leads
to the following equations for occupations of the mid-
dle two quantum dots (n2, n3) = (f2(Δ2, Δ3), f3(Δ2, Δ3))
[25]:

f2(U(n2 − 1/2), U(n3 − 1/2)) = n2

f3(U(n2 − 1/2), U(n3 − 1/2)) = n3.
(22)

These equations can be solved numerically for a wide
set of parameters. In the limit of strong interparticle
interactions, we find a better agreement of the emerg-
ing solutions with the predictions from the TWA for
growing U .

To explain the results in the strongly interacting limit
one has to take into account that each of the Markovian
reservoirs forces the occupation in the wells to be equal
to the occupation nL/R of the reservoir modes. In the
case N = 4 and very strong interparticle interactions one
should expect that the coupling between the middle two
quantum dots is effectively equal to zero in analogy to the
self-trapping effect one observes for a Bose-Einstein con-
densate in a double well potential [26]. One can assume
that the first two quantum dots are coupled only to the
left reservoir – and the last two only to the right one.
In this case, the occupation of the first two and last two
dots is equal to nL, nR respectively, which seems to be
the case after an extrapolation of the results of both ap-
proximations in the limit of large interparticle interaction
strengths.

Fig. 3. Mean particle occupation of the quantum wells for a
chain of four quantum dots coupled to two Markovian reser-
voirs, TWA. The black, dashed, dotted and dash-dotted lines
denote the mean particle occupation in the first, second, third
and fourth quantum dot. We use the parameters: nL = 4000,
nR = 100, Γ/J = 5, Δ1 = Δ2 = Δ3 = 0, U2 = U3 = U .

3.2 Transient behaviour of the system

In order to find an analytical expression for the behaviour
of an empty chain of quantum dots after an instanta-
neous coupling with two reservoirs one has to calculate
the retarded, advanced and lesser Green’s function GR,A,<
of the system. The case of a single fermionic quantum
dot coupled to a reservoir is already considered in [27,28]
in the noninteracting case and in the lowest order self-
energy (tadpole) approximation. The generalisation to a
chain of quantum dots and two Markovian bosonic reser-
voirs is straightforward. For U = 0, the retarded/advanced
Green’s function is obtained from the solution of the set
of equations:

(
i∂t −Δl

)
G
R/A
lk (t, t′) = δlkδ(t− t′)

+
∑

j

∫

dτΣ
R/A
lj (t, τ)GR/Ajk (τ, t′),

(−i∂t′ −Δk)G
R/A
lk (t, t′) = δlkδ(t− t′)

+
∑

j

∫

dτG
R/A
lj (t, τ)ΣR/A

jk (τ, t′). (23)

The retarded/advanced part of the self-energy has the
form

ΣR
lk(t, t

′) =
(−iΓ θ(t)(δl1δk1 + δlNδkN ) − Jδl,k±1

)
δ(t−t′),

ΣA
lk(t, t

′) =
(
+iΓ θ(t)(δl1δk1 + δlNδkN ) − Jδl,k±1

)
δ(t−t′).

(24)
After solving equation (23), one can obtain G<(t, t′) by
making use of the fact that the chain of quantum dots is
empty at t = 0:

G<(t, t′) =
∫
dτ1dτ2G

R(t, τ1)Σ<(τ1, τ2)GA(τ2, t′). (25)

With GR,A,<(t, t′), one can obtain all system observ-
ables. The calculation of the tadpole approximation of the

http://www.epj.org
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Green’s functions (denoted by G̃) of the chain of quantum
dots is obtained via the following equation:

G̃lk(t, t′)=Glk(t, t′)+
∑

j

2Uj
∫
c
dτnj(τ)Glj(t, τ)Gjk(τ, t′).

(26)
The mean occupation number at the lth lattice site is then
given by:

ñl(t) = iG̃<ll (t, t)

= iG<ll (t, t) +
∑
j 2Uj

∫
dτnj(τ)G

R
lj(t, τ)iG

<
jk(τ, t)

+
∑
j 2Uj

∫
dτnj(τ)iG

<
lj(t, τ)G

R
jk(τ, t).

(27)
The first term is the result from the noninteracting case
and the last two are the perturbative corrections from the
interaction. In the following we consider the case N = 3
and observe only the behaviour of n2(t), ñ2(t). In the non-
interacting case we clearly differ between two regimes in
which the observable has the following form:

n2(t) = 0.5(nL + nR)fA(t) Γ < 23/2J

n2(t) = 0.5(nL + nR)fB(t) Γ > 23/2J
(28)

with fA(t), fB(t) given by:

fA(t) = 1 + e−tΓ

β2

( − 8J2 + Γ 2cos(tβ) − Γβsin(tβ)
)

fB(t) = 1 + e−tΓ

β2

(
8J2 − Γ 2cosh(tβ) − Γβsinh(tβ)

)

β =
√|8J2 − Γ 2|.

(29)
In the regime Γ � 23/2J (Fig. 4) the observable con-
verges exponentially to its steady state, as in the case for
the particle occupation of a single quantum dot coupled
to a Markovian reservoir. The time scale of this process is
proportional to Γ/(4J2). But in the limit of very small Γ ,
one observes a step-like behaviour of the particle occupa-
tion, the length of the steps being equal to 2π/β. One can
also see that the fastest convergence to a steady state is
obtained in the case where Γ ∼ J .

The next task is to see if the interparticle interactions
at the middle dot can influence this transient behaviour.
For the special case of N = 3 one can bring equation (27)
into the more compact form

ñ2(t) = n2(t) + 4U2

∫
dτn2(τ)�

(
GR22(t, τ)iG

<
22(τ, t)

)
.

(30)
The correction to the particle occupation in the mid-
dle quantum dot is zero. It follows that not only the
steady state but also the transient behaviour of n2(t)
is unchanged by the presence of interactions at least
within these approximations. The situation is different
if one looks at the numerical solution of equation (16),
where all classical contributions of the interparticle inter-
action are taken into account. In both parameter regimes
(Γ ≶ 23/2J) one observes a quadratic dependence of the
time needed to reach a steady state from the interparticle
interaction in the middle quantum dot (Fig. 4).

Fig. 4. Time evolution of fA(t), fB(t) defined in equation (29)
for U = 0, Γ = 1

20
23/2J (solid line in the upper panel) and

Γ = 5J (solid line in the lower panel). The other lines are the
results from the TWA obtained after dividing n2(t) by (nL +
nR)/2. The values of U2/J are 5× 10−4, 10−3, 10−2 (10−3, 5×
10−3, 10−2) for the dashed, dotted and dashed-dotted lines in
the upper (lower) panel. In the inset one can see the time that
fA(t) or fB(t) needs to reach 0.95. The numerical results are
fitted with a curve of the form g(U2) = a + bU2

2 .

4 Conclusions

We have studied the transient behaviour and the steady
state properties of a chain of quantum dots that is instan-
taneously coupled to two Markovian reservoirs. For the
case of three dots an exact solution in the noninteracting
case is shown. We see that the interparticle interaction
does not change the mean particle occupation in the mid-
dle well in both the TWA and the tadpole approximation.
But the time the system needs to reach a stationary state
increases quadratically with the interaction in the TWA.
We have also found a qualitative explanation for the be-
haviour of the steady state current by the use of the spec-
tral properties of the chain of dots. Increasing the number
of wells from three to four, additional effects arise from
the interparticle interactions. Here the interaction effec-
tively reduces the coupling between the middle two dots
such that n1 = n2 = nL and n3 = n4 = nR in the limit of
very strong interactions.
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In order to access this interesting physics experimen-
tally we envisage the following procedure, which has essen-
tially been partly realized already by the authors of [15].
One starts with a rather large trap with a Bose-Einstein
condensate in perfect equilibrium in it. Then by an in-
stantaneous potential shift one induces a sloshing of the
condensate. After that the system shoud be cut into two
subsystems, for instance by an impenetrable barrier. In
this way one produces two different bosonic reservoirs
which contain a large number of particles in excited states.
Gradually removing the barrier one can then couple these
“reservoirs” and hence allow for the transport. The addi-
tional structuring of the contact area into several quan-
tum dots can be accomplished in the way similar to that
described in [15] for one well, or by adding a lattice po-
tential along the channel created in [12]. We hence expect
that such a “bosonic FET” can be manufactured with the
state-of-the-art experimental methods.

Needless to say, there is enough room for improvement
of our approach. While an extension of the TWA appears
to be highly non-trivial, the inclusion of the higher or-
der self-energies is, in principle, rather straightforward.
Since the latter will definitely generate energy-dependent
quantities, we expect not only quantitative but also qual-
itative differences to our predictions to emerge. However,
they would only play a significant role for intermediate to
strong interactions.

We are very grateful to Peter Schlagheck and Martin
Bruderer for valuable discussions and for support by the
DFG Forschergruppe 760 (Grant No. WI 3426/3-1) and the
Heidelberg Center for Quantum Dynamics.
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