2023 Impact factor 0.8
Historical Perspectives on Contemporary Physics

EPJ D Highlight - Looking for dark matter

A ‘clump’ of dark matter, shown approaching the Earth, causes tiny changes to fundamental constants and therefore to mass and acceleration when it passes through.

A new paper in EPJ D, ‘Constraining domain wall dark matter with a network of superconducting gravimeters and LIGO’, suggests two novel methods of searching for dark matter by measuring tiny perturbations in fundamental constants.

Dark matter, which cannot be physically observed with ordinary instruments, is thought to account for well over half the matter in the Universe, but its properties are still mysterious. One commonly held theory states that it exists as ‘clumps’ of extremely light particles. When the earth passes through such a clump, the fundamental properties of matter are altered in ways that can be detected if instruments are sensitive enough. Physicists Rees McNally and Tanya Zelevinsky from Columbia University, New York, USA, have now published a paper in EPJ D proposing two new methods of looking for such perturbations and, thus, dark matter. This paper is part of the EPJD Topical Issue on Quantum Technologies for Gravitational Physics which is still open to submissions.

Read more...

EPJ D Topical review - Electron collisions with molecules and molecular clusters

Over the last ten years, advances in the computational investigation of electron collision processes have seen an overhaul of many of the software packages employed by researchers, in parallel with the development of new tools. In particular, the increased interest in biological molecules as targets has stimulated the development of software which makes use of current computational abilities. These developments have enabled scientists to study small targets with increasing levels of detail, larger targets than ever before, and the effect of the environment by means of the investigation of small molecular clusters.

Read more...

EPJ D Topical review - Electron-scattering on molecular hydrogen: convergent close-coupling approach

Molecular hydrogen is the simplest neutral molecule, the most abundant molecule in the universe and an important constituent of plasmas with applications in astrophysics, fusion, atmospheric physics, and various industries. Elemental collision processes play an important role in modelling these plasmas, and collisions with electrons have attracted significant interest from both experiment and theory. A number of compilations of cross sections for electron collisions with molecular hydrogen have been produced. In all cases these cross section data sets have been produced from an analysis of experimental data, even though there were significant discrepancies between different experiments for many transitions. Theoretical calculations have been largely excluded from critical evaluations of the data due to large uncertainties. This changed with the application of the convergent close-coupling (CCC) method to electron collisions with molecules.

Read more...

EPJ D Highlight - Frozen-planet states in exotic helium atoms

https://commons.wikimedia.org/wiki/ File:Just_your_average_backyard_ low_energy_anti-proton_ accelerator_(2280414954).jpg, Tom Purves, Toronto, Canada / CC BY (https://creativecommons. org/licenses/by/2.0)

In an elegant study published in EPJ D, physicists from Serbia and Russia have mapped the energy levels and estimated the stability of a ‘frozen planet’ configuration of anti-protonic helium.

Exotic subatomic particles that are like ‘normal’ particles apart from one, opposite, property - such as the positron, which is like an electron but positively rather than negatively charged - are collectively known as antimatter. Direct studies of collisions between particles of matter and those of antimatter using giant facilities such as those at CERN can advance our understanding of the nature of matter. A new study by Tasko Grozdanov from the University of Belgrade in Serbia and Evgeni Solov’ev from the Institute of Nuclear Research near Moscow in Russia has mapped the energy levels of an exotic form of helium produced in this way. This work, which is published in EPJ D, has been described by one commentator as ”... a new jewel in the treasure of scientific achievements in atomic physics theory”.

Read more...

EPJ D Highlight - A better starting point for exploring entanglement

A clearly quantum non-Gaussian curve

Updated mathematical techniques which can distinguish between two types of ‘non-Gaussian curve’ could make it easier for researchers to study the nature of quantum entanglement.

Quantum entanglement is perhaps one of the most intriguing phenomena known to physics. It describes how the fates of multiple particles can become entwined, even when separated by vast distances. Importantly, the probability distributions needed to define the quantum states of these particles deviate from the bell-shaped, or ‘Gaussian’ curves which underly many natural processes. Non-Gaussian curves don’t apply to quantum systems alone, however. They can also be composed of mixtures of regular Gaussian curves, producing difficulties for physicists studying quantum entanglement. In new research published in EPJ D, Shao-Hua Xiang and colleagues at Huaihua University in China propose a solution to this problem. They suggest an updated set of equations which allows physicists to easily check whether or not a non-Gaussian state is genuinely quantum.

Read more...

EPJ D Highlight - Deconstructing Schrödinger’s Cat

Cartoon of Schrödinger’s cat, https://commons.wikimedia.org/wiki/ File:Schrodingers_cat.svg (CC BY-SA)

The French theoretical physicist Franck Laloë presents a modification of Schrödinger’s famous equation that ensures that all measured states are unique, helping to solve the problem that is neatly encompassed in the Schördinger’s cat paradox.

The paradox of Schrödinger’s cat – the feline that is, famously, both alive and dead until its box is opened – is the most widely known example of a recurrent problem in quantum mechanics: its dynamics seems to predict that macroscopic objects (like cats) can, sometimes, exist simultaneously in more than one completely distinct state. Many physicists have tried to solve this paradox over the years, but no approach has been universally accepted. Now, however, theoretical physicist Franck Laloë from Laboratoire Kastler Brossel (ENS-Université PSL) in Paris has proposed a new interpretation that could explain many features of the paradox. He sets out a model of this possible theory in a new paper in EPJ D.

Read more...

EPJ D Highlight - Breaking up amino acids with radiation

Mass spectra of the fragments obtained from glutamine molecules at different radiation doses.

A new study describes how the amino acid, glutamine, is broken up when bombarded with different doses of electrons. This has implications for cancer radiotherapy and understanding the origin of life.

Small organic molecules, including the amino acids that form the ‘building blocks’ of proteins in living cells, fragment to form ions under the impact of high-energy radiation such as electron beams. A new study published in EPJ D has now shown what happens when electrons collide with one amino acid, glutamine. The extent of the damage and the nature of the ions formed are both affected by the energy of the colliding electrons. This work arises from a collaboration between experimental physicists led by Alexander Snegursky at the Institute of Electron Physics, Uzhgorod, Ukraine and theoreticians led by Jelena Tamuliene at Vilnius University, Vilnius, Lithuania.

Read more...

EPJ D Highlight - Buckyballs release electron-positron pairs in forward directions

Impacting positrons release positronium from C60. Credit: Benjah-bmm27, public domain.

Theoretical calculations reveal that when impacted by positrons of particular energies, spherical nanoparticles release unstable electron-positron pairs, with signals dominating in the same direction as the incoming positrons.

When electrons collide with positrons, their antimatter counterparts, unstable pairs can form in which both types of particle orbit around each other. Named ‘positronium’, physicists have now produced this intriguing structure using a diverse range of positron targets – from atomic gases to metal films. However, they have yet to achieve the same result from vapours of nanoparticles, whose unique properties are influenced by the ‘gases’ of free electrons they contain in well-defined, nanoscopic regions. In new research published in EPJ D, Paul-Antoine Hervieux at the University of Strasbourg, France and Himadri Chakraborty at Northwest Missouri State University, USA, reveal the characteristics of positronium formation within football-shaped nanoparticles, C60, for the first time. At specific positron impact energies, they show that positronium emission dominates in the same direction as the incoming antiparticles.

Read more...

EPJD has appointed a new Editor-in-Chief

 Sylwia Ptasinska

EPJ is pleased to announce that Prof Sylwia Ptasinska of the University of Notre Dame, USA has been appointed as an Editor-in-Chief for EPJ D, effective January 2020. She will be responsible for the plasmas section of the journal, and succeeds Prof Holger Kersten, who steps down after five years in the role. A faculty member at Notre Dame since 2010, her research focuses on understanding the variety of processes occurring in heterogeneous systems, including plasmas and interfaces. Though experimental investigations in her laboratory address fundamental questions, the goal of her team is to apply this research in areas such as energy, medicine, and industry. Sylwia Ptasinska is a member of the Executive Committee for the Gaseous Electronics Conference (GEC) and is also the local chair of the next POSMOL meeting. She has been a member of the Editorial Board for EPJD since 2015.

EPJ D Highlight - Laser-based prototype probes cold atom dynamics

Apparatus for cold atom inertial sensing

A new prototype design doubles the frequencies of widely used telecommunications lasers to study the dynamics of cold atoms while in space.

By tracking the motions of cold atom clouds, astronomers can learn much about the physical processes which play out in the depths of space. To make these measurements, researchers currently use instruments named ‘cold atom inertial sensors’ which, so far, have largely been operated inside the lab. In new work published in EPJ D, a team of physicists at Muquans and LNE-SYRTE (the French national metrology laboratory for time, frequency and gravimetry) present an innovative prototype for a new industrial laser system. Their design paves the way for the development of cold atom inertial sensors in space.

Read more...

Editors-in-Chief
A. Blum and M. Leone
ISSN (Print Edition): 2102-6459
ISSN (Electronic Edition): 2102-6467

© EDP Sciences and Springer-Verlag