2023 Impact factor 0.8
Historical Perspectives on Contemporary Physics

EPJ ST Highlight - Taking a step back from the membrane debate

Phospholipid molecules are the building blocks of cell membranes

New progress in a long-standing debate about the nature of biological cell membranes could be made by considering which aspects of the membrane can be captured in simplified simulations

Even after 60 years of exhaustive experimentation and modelling, researchers still haven’t reached a consensus about the true nature of the deeply complex behaviours of biological cell membranes. Today, many disagreements remain over how the membrane’s molecular building blocks cooperate with each other to produce its overarching properties.

Through a new mini-review published in EPJ Special Topics (EPJ ST), John Ipsen at the University of Southern Denmark takes a step back from the debate: showing how complications to the discussion have emerged from the practices widely used to simulate the membrane. The insights presented in his paper could offer useful guidance for researchers, and may help to break a long-standing deadlock in their conflicting interpretations of the membrane’s properties.

Read more...

EPJ ST Highlight - Modelling Brain Networks in Parkinson’s Disease

The mathematical operator K applied to a healthy brain network to simulate the alterations in connectivity caused by a neurological disease, such as Parkinson’s disease
© M. Mannone

Insights from network theory have led to a novel mathematical representation of Parkinson’s disease development with potential clinical applications

Neurodegenerative diseases, such as Parkinson’s disease, can be thought of as arising from malfunctions in the network of neuronal agglomerates in the brain. It is therefore often useful to apply insights from a branch of mathematics called network theory when studying the development of these diseases. A group of European physicists and engineers led by Maria Mannone of the National Research Council of Italy, the University of Potsdam, Germany, and the Potsdam Institute for Climate Impact Research (PIK), Germany, has now taken this further by defining a matrix transforming the brain network of a healthy individual into one affected by Parkinson’s disease. This has now been published in EPJ Special Topics (EPJ ST).

Read more...

EPJ ST Highlight - A mathematical approach to simulating electromagnetic field of ReBCO superconductors

Mapping power losses in a ReBCO superconductor

Electromagnetic field and alternating current loss in high-temperature ReBCO superconductors can be obtained by treating their complex electromagnetic interactions as a convex optimisation problem

Rare-earth barium copper oxides (ReBCO) are a family of superconducting materials that allow electrical currents to flow with zero resistance, even at temperatures well above absolute zero. This allows them to sustain stronger magnetic fields than other type of superconductors. However, these materials often host a complex nonlinear electromagnetic response. So far, it is a challenge to deal with the electromagnetic problem of ReBCO superconductors accurately and efficiently.

Through new research published in EPJ Special Topics (EPJ ST), Huadong Yong and colleagues at Lanzhou University, China, show that the electromagnetic problem with power law relation can be approached as a mathematical challenge known as a ‘convex optimisation problem’. By applying this problem-solving method, the team was able to accurately calculate the electromagnetic field and alternating current loss for a variety of real-life superconducting structures.

Read more...

EPJ ST Highlight – Observing Flows at a Liquid-Liquid-Solid Intersection

Cameras and lasers measure the flow fields near a liquid-liquid moving contact line. Gupta et al. 2024

Experiments reveal how a liquid-liquid interface interacts with a moving contact line.

Most of us are familiar with the classic example of a liquid-gas moving contact line on a solid surface: a raindrop, sheared by the wind, creeps along a glass windscreen. The contact line’s movements depend on the interplay between viscous and surface tension forces - a relationship that has been thoroughly investigated in experimental fluid mechanics. In a study published in EPJ Special Topics (EPJ ST), Harish Dixit, of the Indian Institute of Technology Hyderabad, and his colleagues now examine the movements of a contact line formed at the interface between two immiscible liquids and a solid. The experiments fill a gap in fluid dynamics and suggest a mechanism for an imposed boundary condition that eludes mathematical description.

Read more...

EPJ ST: Miroslav Dramićanin new Editor on board

The publishers are very pleased to announce that Prof. Miroslav Dramićanin has recently joined the EPJST Editorial Board.

Prof. Miroslav Dramićanin is a full professor of applied physics at the University of Belgrade and a research fellow at the Vinca Institute of Nuclear Sciences in Belgrade. His research group, the Optical Materials and Spectroscopy Group, is working on luminescent materials and nanomaterials for lighting and sensing. His primary interests are lanthanide and transition metal-activated phosphors, luminescence thermometry, and optical spectroscopy. He is an animal lover and environmental activist.

EPJ ST: Norbert Marwan new Editor on board

The publishers are very pleased to announce that Dr. Norbert Marwan has recently joined the EPJST Editorial Board.

Dr. Norbert Marwan is the deputy head of the Complexity Science department at the Potsdam Institute for Climate Impact Research (PIK) in Potsdam, Germany. He also serves as a private docent at both the Institute of Physics and Astronomy and the Institute of Geosciences at the University of Potsdam. He studied Theoretical Physics at the Dresden University of Technology and earned his PhD from the University of Potsdam in 2003. Additionally, he is the organizer of the biennial International Symposium on Recurrence Plots.

His research interests encompass all aspects of investigating complex systems, nonlinear data analysis, and related interdisciplinary applications. One particular focus is on recurrence plot-related methods and studying palaeoclimate variability using speleothems. He has published more than 270 peer-reviewed research papers.

EPJ ST: John Weisend new Editor on board

The publishers are very pleased to announce that Dr. John Weisend has recently joined the EPJST Editorial Board.

John Weisend is currently a Senior Scientist in the Accelerator Division at the European Spallation Source in Lund, Sweden. He is also an Adjunct Professor of Engineering at Lund University. He received his Ph.D. in Nuclear Engineering & Engineering Physics from the University of Wisconsin – Madison. He has worked at the SSC Laboratory, the Centre D’Etudes Nucleaires Grenoble, the Deutsches Elecktronen-Synchrotron Laboratory (DESY), the Stanford Linear Accelerator Laboratory (SLAC), the National Science Foundation and Michigan State University.

Dr. Weisend’s interests include He II, cryogenic safety, large scale accelerator cryogenics and the development of large international science projects. He published various books including Superfluid, He is for Helium, Going for Cold (co-authored with T. Meaden), Cryogenic Safety (co-authored with T. Peterson), Cryogenic Two-Phase Flow (co-authored with N. Filina) and is an editor of the Handbook of Cryogenic Engineering and of Cryostat Design. He writes a regular column “Cryo Bios” for the publication Cold Facts. Dr. Weisend is a Co-Editor in Chief for the journal Interactions. He is a chair of the Cryogenic Society of America and the International Cryogenic Engineering Conference Board.

EPJ ST: Filippos Sofos new Editor on board

The publishers of The European Physical Journal Special Topics are pleased to announce the appointment of Dr Filippos Sofos as new Editor in the board.

Dr. FILIPPOS SOFOS is an Assistant Professor in Computational Condensed Matter Physics, at the Department of Physics, University of Thessaly, GR. He studied Electrical and Computer Engineering at the Democritus University of Thrace, GR, where he also obtained his MSc in Microelectronics and Digital Systems, and received his PhD from the Civil Engineering Department, University of Thessaly, GR. The topic of his PhD Thesis was related to the investigation of flows at the nano/micro-scale with the Molecular Dynamics method.

His research interests focus on the application of innovative machine learning methods in physical sciences, big data analysis, deep learning and super resolution, genetic programming, as well as numerical simulation methods in fluid mechanics and materials, multiscale modeling, nanofluidics, and computational Hydraulics. In these directions, he has published more than 100 journal and conference proceedings papers.

EPJ ST: Jingting Luo new Editor on board

The publishers of The European Physical Journal Special Topics are pleased to announce the appointment of Professor Jingting Luo as new Editor in the board.

Jingting Luo received the Ph.D. degree from Tsinghua University, Beijing, China, in 2012.

He worked as an Academic Visitor with the Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, U.K., in 2016.

Since 2012, he has been working as a Researcher with Shenzhen University, Shenzhen, China, where he is currently a Professor with the College of Physics and Optoelectronic Engineering. He is the Director of Shenzhen Key Laboratory of Advanced Thin Films and Applications.

He has published over 150 science citation index (SCI) journal articles and more than 20 high cited articles. He has extensive experience in thin film materials and devices, including optoelectronics thin film and solar cells, thermoelectric thin film and devices, smart thin films, biomedical microdevices, lab-on-chip, MEMS, sensors and microfluidics.

EPJ ST Highlight - CompactLight: Designing a Cost-Effective XFEL Facility

An international group of experts has produced a design for a free electron X-ray laser facility that is significantly smaller and cheaper than those that are currently in use.

Very many advances in structural science since the 1970s were made by probing materials with synchrotron radiation: that is, high energy X-rays generated through accelerating high-energy electrons. The latest generation of such sources, X-ray free electron lasers (XFEL) are far more powerful than their predecessors, but are only accessible to international consortia and a few rich countries because of their high cost. Now, an international group of experts have prepared a design for a more compact and cost-effective XFEL system, accessible to small countries and, perhaps, some individual laboratories. The design is published in EPJ Special Topics (EPJ ST).

Read more...

Editors-in-Chief
A. Blum and M. Leone
ISSN (Print Edition): 2102-6459
ISSN (Electronic Edition): 2102-6467

© EDP Sciences and Springer-Verlag