News
EPJ D Highlight - Clues to inner atomic life from subtle light-emission shifts
- Details
- Published on 29 June 2015

Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods
Atoms absorb and emit light of various wavelengths. Physicists have long known that there are some tiny changes, or shifts, in the light that gets absorbed or emitted, due to the properties of the atomic nucleus. Now, a team of scientists has elucidated the so-called hyperfine structure of cadmium atoms. Relying on a method called laser spectroscopy, they have measured variations in the energy transition within cadmium atom - Cd in the periodic table. They studied a chain of isotopes with an odd number of neutrons ranging from 59 in 107Cd to 75 in 123Cd. From these high-precision measurements, they were able to identify the physical cause of the shift within the nucleus. These findings by Nadja Frömmgen from the Johannes Gutenberg University Mainz, in Germany, and international colleagues have now been published in EPJ D.
EPJB Colloquium: From seconds to months: the multi-scale dynamics of mobile telephone calls
- Details
- Published on 24 June 2015

'Big Data' from electronic records derived from mobile telephone calls enables the study human behaviour and sociality in a quantitative way and with unprecedented statistical power. Cell phones are ubiquitous and Call Detail Records (CDRs), automatically collected by telecom operators are records of verified, time-stamped one-to-one communication. They are particularly useful to understand one-to-one communication patterns, as well as the dynamics of the social networks that are reflected in such patterns. In this EPJ B Colloquium, Jari Saramäki and Esteban Moro present an overview of empirical results pertaining to the multi-scale nature of social dynamics and networks, as inferred from CDRs.
EPJ issues findings from working group on peer review
- Details
- Published on 24 June 2015
On 15 June 2015 EDP Sciences (Paris, France) have released information on the findings and recommendations of a working group into the peer review process. The meeting involved a committee of experts linked to the European Physical Journal (EPJ) including Editors-in-Chief, Associate-Editors, members of the Steering Committee and researchers involved in Scientific and Technical Information. EPJ itself, represents 25 European Physical Societies through its Scientific Advisory Committee.
EPJ D Colloquium - Recent advances in the application of the Schwinger multichannel method with pseudopotentials to electron-molecule collisions
- Details
- Published on 18 June 2015

A new Colloquium paper published in EPJ D describes recent advances in the use of the Schwinger multichannel method and considers potential future applications of the technique. Based on the Schwinger variational principle for the scattering amplitude, the Schwinger multichannel method was designed to account for exchange, polarization and electronically multichannel coupling effects in the low-energy region of electron scattering from molecules with arbitrary geometry.
EPJ B Colloquium: Large scale simulations on GPU clusters
- Details
- Published on 15 June 2015

Graphics Processing Units (GPU) are currently used as a cost-effective platform for computer simulations and big-data processing. Large scale applications require that multiple GPUs work together, but the efficiency obtained with cluster of GPUs is, at times, suboptimal because the GPU features are not exploited at their best.
EPJ B Colloquium: Ceramics in art and archeology
- Details
- Published on 26 May 2015

Analytical techniques, originally developed for traditional materials, turn out to be very useful to study the composition and structure of artistic and historical specimens. But the reverse is also true. The study of ancient artefacts is providing interesting insights of more general interest to materials scientists, as well as inspiration for current artists.
EPJ E Highlight - How supercooled water is prevented from turning into ice
- Details
- Published on 20 May 2015

Calculating the energy barrier that keeps liquid water below zero from immediately turning into ice provides the key to understanding its ability to be compressed as temperature drops
Water behaves in mysterious ways. Especially below zero, where it is dubbed supercooled water, before it turns into ice. Physicists have recently observed the spontaneous first steps of the ice formation process, as tiny crystal clusters as small as 15 molecules start to exhibit the recognisable structural pattern of crystalline ice. This is part of a new study, which shows that liquid water does not become completely unstable as it becomes supercooled, prior to turning into ice crystals. The team reached this conclusion by proving that an energy barrier for crystal formation exists throughout the region in which supercooled water’s compressibility continues to rise. Previous work argued that this barrier vanished as the liquid gets colder. These findings have been published in EPJ E by Connor Buhariwalla from St. Francis Xavier University in Antigonish, Canada and colleagues.
EPJ E Colloquium – The importance of rheology in tissue development
- Details
- Published on 20 May 2015

Our understanding of biomechanics increasingly improves through the use of physics models. There are some intriguing biological questions regarding the interplay between the behaviour of cells and the mechanics at the level of tissues. For example, how does a collective behavior, not apparent at the cell scale, emerge at the tissue level? Or how can the mechanical state of a tissue affect the cell division rate or the orientation of cells undergoing division?
The authors of this new EPJ E Colloquium entitled “Mechanical Formalism for Tissue Dynamics” think that the interplay between genes and mechanics is key to understanding how the adult shape emerges from a developing tissue.
EPJ B Colloquium: Evolutionary Games on Multilayer Networks
- Details
- Published on 19 May 2015

Networks of networks, or multilayer networks, are a fitting description of social systems. Small and seemingly irrelevant changes in a network can have catastrophic consequences in another network. Moreover the structures of networks are relevant to the evolution of cooperation.
In this EPJ B colloquium, devoted to evolutionary games on multilayer networks, Zhen Wang and colleagues take into consideration the implications of the fact that humans are usually members of multiple social networks and conclude that the evolution of cooperation is one of the main pillars of modern human societies.
EPJ B Highlight - Electricity generating nano-wizards
- Details
- Published on 13 May 2015

Quantum dots are an ideal nanolab to study the means to turning heat into electricity
Just as alchemists always dreamed of turning common metal into gold, their 19th century physicist counterparts dreamed of efficiently turning heat into electricity, a field called thermoelectrics. Such scientists had long known that in conducting materials the flow of energy in the form of heat is accompanied by a flow of electrons. What they did not know at the time is that it takes nanometric-scale systems for the flow of charge and heat to reach a level of efficiency that cannot be achieved with larger scale systems. Now, in a paper published in EPJ B Barbara Szukiewicz and Karol Wysokiński from Marie Curie-Skłodowska University, in Lublin, Poland have demonstrated the importance of thermoelectric effects, which are not easily modelled, in nanostructures.