https://doi.org/10.1140/epjh/s13129-024-00080-9
Regular Article
The drama of ideas in the history of quantum gravity: Niels Bohr, Lev Landau, and Matvei Bronstein
Boston University, Brighton, MA, USA
Received:
12
March
2024
Accepted:
11
July
2024
Published online:
15
August
2024
Einstein's expression ‘Drama of Ideas’ to describe the history of fundamental physics is especially suitable for the problem of quantum gravity (QG). The problem was identified by Einstein in 1916 based on an empirico-cosmological argument that was cosmologically flawed and empirically immeasurable. In 1929, the problem was strikingly underestimated by prominent figures in quantum theory, W. Heisenberg and W. Pauli. In 1929, Bohr, basing on the puzzling results of recent nuclear experiments and theoretical quantum limitations, hypothesized that the law of conservation of energy does not hold in nuclear physics. The young Russian physicist Landau enthusiastically supported Bohr's ‘beautiful idea’ and in 1931 proposed its theoretical justification, which, however, was rejected by Bohr. In late 1932, Landau realized that Bohr's hypothesis was incompatible with Einstein's theory of gravity. This meeting of two fundamental theories prompted Matvei Bronstein to investigate the quantization of gravity in-depth. In 1935, he proposed the first physical theory of QG for the weak gravity and revealed how deep the QG problem was for strong gravity. He showed that the gravitational field at a point in space–time is in principle unobservable and concluded that a complete theory of QG would require the ‘rejection of a Riemannian geometry… and perhaps also the rejection of our ordinary concepts of space and time, replacing them by some much deeper and non-evident concepts’. Until now, despite thousands of publications on QG, the problem remains a great challenge in theoretical physics.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.